

Solar Cell Fabrication on the Moon form Lunar Resources

Alex Ignatiev

Texas Center for Superconductivity and Advanced Materials

University of Houston

Houston, TX 77204-5002

In-Space Fabrication and Repair Workshop

Lunar Base

Lunar Power Requirements

- Initial: 100kW to 1 MW
- Non-Nuclear/ Non-Mechanical
- Solar Cells
 - Current technology: 300 W to 500 W/kg
 - From 300 to 3000kg to transport lightweight cells
 - High costs (~\$5B)

Living off the Land – Do This in Space : In-Situ Resource Utilization (ISRU)

Fabrication of Solar Cells on the Surface of the Moon from Lunar Regolith

- Moon's Surface is an Ultra-High Vacuum
 - $\sim 10^{-10} \, \text{Torr (day)}$
 - Use vacuum evaporation to make thin film solar cells
- Elements Required for Silicon-based Thin Film Solar Cells are Present on the Moon
 - Silicon
 - Iron
 - Titanium Oxide
 - Calcium
 - Aluminum

Carbothermal Reduction of Anorthite

Step 1.
$$4 \text{ CH}_4 \xrightarrow{\text{--------}} 4 \text{ C} + 8 \text{ H}_2$$

Step 2. $CaAl_2Si_2O_8 + 4 \text{ C} \xrightarrow{\text{-------}} CaO + Al_2O_3 + 2 \text{ Si} + 4 \text{ CO}$
(anorthite)
m.p. 1521°C

Ni Catalyst
250°C

Step 3. $4 \text{ CO} + 12 \text{ H}_2 \xrightarrow{\text{-------}} 4 \text{ CH}_4 + 4 \text{ H}_2O$

Step 4. $4 \text{ H}_2O + \text{ electrolysis} \xrightarrow{\text{-----}} 4 \text{ H}_2 + 2 \text{ O}_2$

⇒ Closed cyclic process yielding both OXYGEN and SILICON:

$$CaAl_2Si_2O_8$$
 ----> $CaO + Al_2O_3 + 2 Si + 2 O_2$

Ilmentite Reduction (Hydrogen or Carbon)

⇒ Yields Iron for Interconnect and TiO₂ for Antireflect

Have All of the Components for Thin Film Solar Cell Deposition on the Surface of the Moon

- Vacuum
- Raw Materials
- Energy

Vacuum Deposition of Thin Film Semiconductors in Space

- Automated Thin Film Deposition in Space
 - Wake Shield Facility
 - . Flown three times on Shuttle
 - Grow thin film semiconductors in the ultravacuum of space
 - . Fabricate p-n junctions

Wake Shield Facility in free flight -STS-80

Vacuum Deposition of Thin Film Silicon Solar Cells on the Moon

(In-Space Fabrication)

- Automated Thin Film Deposition on the Surface of the Moon
 - Prepare substrate
 - Deposit bottom electrode
 - Fabricate p-n junction
 - Deposit top patterned electrode
 - Deposit antireflection layer
 - Interconnect individual cells

Fabrication of Solar Cells on the Surface of the Moon from Lunar Regolith

- Fabrication of Silicon Solar Cells
 - Use lunar materials (Si, Fe, TiO₂, etc.)
 - Lunar 'glass' substrate melt regolith by solar heat
 - Deposit polycrystalline silicon solar cells by solar evaporation
 - Interconnect solar cells serially for ~100V
 - Do cell fabrication robotically

Lunar Silicon Solar Cell

- Lunar Solar Cell Interconnection
 - Stair-step interconnection
 - Serial connections for ~ 100V
 - Cell groups fabricated for ~ 10A

Development of Si Solar Cell on Melted Regolith Substrate

Si (n/p junction)/Al deposited on lunar regolith substrate

Fabrication of Solar Cells on the Surface of the Moon from Lunar Regolith

- Mechanized Solar Cell Growth Facility Crawler
 - ~ 150 200 kg
 - Multiple parabolic trough solar collectors slow tracking
 - Solar panels for power
 - Continuous lay-out of cells on lunar surface
 - East-west motion
 - Remotely controlled

Mechanized Solar Cell Growth Facility - Crawler

Solar Thermal Lunar Regolith Melting

Fabrication of Solar Cells on the Surface of the Moon from Lunar Regolith

- 1 m²/hr
- Fabricate ~ 65W/hr @ 5% and AMO (~1300 W/m²)
- Assume 35% uptime (~3060 hrs/yr)
- Fabricate ~200kW/yr capacity
- Require ~ 180kg of raw materials
- Continuous Cell Replacement Self Replicating System
 - Assume limited cell lifetime
 - . Radiation damage
 - . Particle damage

Production of Solar Cells on the Surface of the Moon from Lunar Regolith

- Ultra-high Vacuum on Lunar Surface Allows for Direct Thin Film Solar Cell Production
 - Less Mass to the Moon
 - Lunar Resources can be Utilized for Cell Production
 - Trade-off Cell Efficiency with Quantity
 - Multiple Facilities can be Utilized
 - Move to Industrial Scale Power Generation and Power Grid on the Moon
 - . 10 Rovers ⇒ from 2 to 4 MW/year
 - . (Lunar Lighting & Power LL&P)

Acknowledgements:

Dr. Alexandre Freundlich

Dr. Charles Horton

Dr. Mike Duke

Dr. Sanders Rosenberg

Dr. Darby Makel

Mr. Jerry Sanders

Mr. Scott Baird

